Construction cone
This page is under construction and is still being written! Any major unauthorized edits will be reverted, but some minor, grammar and spelling fixes are freely allowed if you find any errors of this type.

IMPORTANT:This page has used Creative Commons Licensed content from Wikipedia in either a refactored, modified, abridged, expanded, built on or 'strait from' text content!
Sokol torpedo

Workers loading torpedoes to Polish Submarine ORP "Sokół" - British U-class submarine ind 1943.

Soviet-R-12-nuclear-ballistic missile

Soviet R-12 (SS-4 Sandal) intermediate-range nuclear ballistic missile (NATO designation SS-4) in Moscow.

What is an 'explosion'Edit


An detonation of 16 TNT equivalent tons of explosives.


Black smoke from an explosion rising after a bomb detonation inside the outside Nahr al-Bared, Lebanon.

Sanduo 1st Road after Explosion Record 20140811-021

The damaged roads after gas explosions in Kaohsiung, Taiwan on 31 July 2014.

An explosion is a rapid increase in volume and release of energy in an extreme manner, usually with the generation of high temperatures and the release of gases. Supersonic explosions created by high explosives are known as detonations and travel via supersonic shock waves. Subsonic explosions are created by low explosives through a slower burning process known as deflagration. When caused by a man-made device such as an exploding rocket or firework, the audible component of an explosion is referred to as its "report" (which can also be used as a verb, e.g., "the rocket reported loudly upon impact".).

Some explorations are as a result of errors, accidents and sabotage and technical faults. A gas explosion is an explosion resulting from a gas leak in the presence of an ignition source. The principal explosive gases are natural gas, methane, propane and butane, because they are widely used for heating purposes. However, many other gases, like hydrogen, are combustible and have caused explosions in the past. Industrial gas explosions can be prevented with the use of intrinsic safety barriers to prevent ignition.

The term "TNT equivalent"Edit

TNT equivalent is a convention for expressing energy, typically used to describe the energy released in an explosion. The term "a ton of TNT" is a unit of energy defined by that convention to be 4.184 gigajoules, which is the approximate energy released in the detonation of a metric ton (1,000 kilograms or one megagram) of TNT. The convention intends to compare the destructiveness of an event with that of conventional explosives, of which TNT is a typical example (although other conventional explosives such as dynamite contain more energy).

The "kiloton (of TNT)" is a unit of energy equal to 4.184 terajoules.
The "megaton (of TNT)" is a unit of energy equal to 4.184 petajoules.

The kiloton and megaton of TNT have traditionally been used to describe the energy output, and hence the destructive power, of a nuclear weapon. The TNT equivalent appears in various nuclear weapon control treaties, and has been used to characterize the energy released in such other highly destructive events as an asteroid impact.

The explosive yield of a nuclear weapon is the amount of energy released when that particular nuclear weapon is detonated, usually expressed as a TNT equivalent (the standardized equivalent mass of trinitrotoluene which, if detonated, would produce the same energy discharge), either in kilotons (kt—thousands of tons of TNT), in megatons (Mt—millions of tons of TNT), or sometimes in terajoules (TJ). An explosive yield of one terajoule is 0.239 kt of TNT. Because the accuracy of any measurement of the energy released by TNT has always been problematic, the conventional definition accepted since the dawn of the Atomic Age is that one kiloton of TNT is simply to be 1012 calories equivalent, which is only approximately equal to the energy yield of 1,000 tons of TNT.

The yield-to-weight ratio is the amount of weapon yield compared to the mass of the weapon. The practical maximum yield-to-weight ratio for fusion weapons (thermonuclear weapons) has been estimated to six megatons of TNT per metric ton of bomb mass (25 TJ/kg). Yields of 5.2 megatons/ton and higher have been reported for large weapons constructed for single-warhead use in the early 1960s. Since this time, the smaller warheads needed to achieve the increased net damage efficiency (bomb damage/bomb weight) of multiple warhead systems, has resulted in decreases in the yield/weight ratio for single modern warheads.

The relative effectiveness factor, or R.E. factor, relates an explosive's demolition power to that of TNT, in units of the TNT equivalent/kg (TNTe/kg). The R.E. factor is the relative mass of TNT to which an explosive is equivalent; the greater the R.E., the more powerful the explosive.

This enables engineers to determine the proper masses of different explosives when applying blasting formulas developed specifically for TNT. For example, if a timber-cutting formula calls for a charge of 1 kg of TNT, then based on octanitrocubane's R.E. factor of 2.38, it would take only 1.0/2.38 (or 0.42) kg of it to do the same job. Using PETN, engineers would need 1.0/1.66 (or 0.60) kg to obtain the same effects as 1 kg of TNT. With ANFO or ammonium nitrate, they would require 1.0/0.74 (or 1.35) kg or 1.0/0.42 (or 2.38) kg, respectively.


Black Powder Close Up

Black powder for muzzleloading rifles and pistols in FFFG granulation size. U.S. Quarter coin (diameter 24 mm) for comparison.

Gunpowder, also known as black powder, is the earliest known chemical explosive. It is a mixture of sulfur, charcoal, and potassium nitrate (saltpeter). The sulfur and charcoal act as fuels, and the saltpeter is an oxidizer. Because of its burning properties and the amount of heat and gas volume that it generates, gunpowder has been widely used as a propellant in firearms and as a pyrotechnic composition in fireworks. Formulations used in blasting rock (such as in quarrying) are called blasting powder. Gunpowder is mainly used in older guns now because the propellants used today are too powerful and could break the already fragile barrels.

Gunpowder was invented in the 9th century in China, and the earliest record of a written formula for gunpowder appears in the 11th century Song dynasty text, the Wujing Zongyao. This discovery led to the invention of fireworks and the earliest gunpowder weapons in China. In the centuries following the Chinese discovery, gunpowder weapons began appearing in the Muslim world, Europe, and India. The technology spread from China through the Middle East or Central Asia, and then into Europe. The earliest Western accounts of gunpowder appear in texts written by English philosopher Roger Bacon in the 13th century. he hypothesis that gunpowder was used by ancient Hindus was first mentioned in the eighteenth century by some Sanskrit scholars. The most ardent protagonists were Nathaniel Halhad, Johann Backmann, Quintin Craufurd and Gustav Oppert. However due to lack of sufficient proof, these theories have not been widely accepted.

Gunpowder is assigned the UN number UN0027 and has a hazard class of 1.1D. It has a flash point of approximately 427–464 °C (801–867 °F). The specific flash point may vary based on the specific composition of the gunpowder. Gunpowder's specific gravity is 1.70–1.82 (mercury method) or 1.92–2.08 (pycnometer), and it has a pH of 6.0–8.0.

Gunpowder is classified as a low explosive because of its relatively slow decomposition rate and consequently low brisance. Low explosives deflagrate (i.e., burn) at subsonic speeds, whereas high explosives detonate, producing a supersonic wave. Ignition of the powder packed behind a bullet must generate enough pressure to force it from the muzzle at high speed, but not enough to rupture the gun barrel. Gunpowder thus makes a good propellant, but is less suitable for shattering rock or fortifications. Gunpowder was widely used to fill artillery shells and in mining and civil engineering to blast rock until the second half of the 19th century, when the first high explosives were put into use. Gunpowder is no longer used in modern explosive military warheads, nor is it used as main explosive in mining operations due to its cost relative to that of newer alternatives such as ammonium nitrate/fuel oil (ANFO). Black powder is still used as a delay element in various munitions where its slow-burning properties are valuable.

Gun powder\black powder was measured in various ways such as ounces, barrels, pounds and apothecary grains.

Napoleonic warEdit

The weights and terms became more standarised and the kilogram joined the list of measures.

American Civil WarEdit

Nitroglycerin (NG), also known as nitroglycerine, trinitroglycerin (TNG), trinitroglycerine, nitro, glyceryl trinitrate (GTN), or 1,2,3-trinitroxypropane, is a heavy, colorless, oily, explosive liquid most commonly produced by nitrating glycerol with white fuming nitric acid under conditions appropriate to the formation of the nitric acid ester. Chemically, the substance is an organic nitrate compound rather than a nitro compound, yet the traditional name is often retained. Invented in 1847, nitroglycerin has been used as an active ingredient in the manufacture of explosives, mostly dynamite, and as such it is employed in the construction, demolition, and mining industries. Since the 1880s, it has been used by the military as an active ingredient, and a gelatinizer for nitrocellulose, in some solid propellants, such as cordite and ballistite.

Nitroglycerin is also a major component in double-based smokeless gunpowders used by reloaders. Combined with nitrocellulose, there are hundreds of powder combinations used by rifle, pistol, and shotgun reloaders.

For over 130 years, nitroglycerin has been used medically as a potent vasodilator (dilation of the vascular system) to treat heart conditions, such as angina pectoris and chronic heart failure. Though it was previously known that these beneficial effects are due to nitroglycerin being converted to nitric oxide, a potent venodilator, it was not until 2002 that the enzyme for this conversion was discovered to be mitochondrial aldehyde dehydrogenase. Nitroglycerin is available in sublingual tablets, sprays, and patches. Other potential suggested uses include adjunct therapy in prostate cancer.

TNT was first prepared in 1863 by German chemist Julius Wilbrand and originally used as a yellow dye. Its potential as an explosive was not appreciated for several years, mainly because it was so difficult to detonate and because it was less powerful than alternatives. Its explosive properties were first discovered by another German chemist, Carl Haeussermann, in 1891. TNT can be safely poured when liquid into shell cases, and is so insensitive that in 1910, it was exempted from the UK's Explosives Act 1875 and was not considered an explosive for the purposes of manufacture and storage. TNT was just under twice as powerful as gunpowder.

The German armed forces adopted it as a filling for artillery shells in 1902. TNT-filled armour-piercing shells would explode after they had penetrated the armour of British capital ships, whereas the British lyddite-filled shells tended to explode upon striking armour, thus expending much of their energy outside the ship. The British started replacing lyddite with TNT in 1907.

A package for Hitler. An infantryman in training at Fort Belvoir, Va., prepares to hurl a pineapple of the inedible... - NARA - 196462

A package for Hitler. An infantryman in training at Fort Belvoir, Va., prepares to hurl a pineapple of the inedible variety. Date- ca. 11/1942.

The Mk 2 ''Pine apple'' grenade (sometimes also written Mk II) is a fragmentation type anti-personnel hand grenade introduced by the U.S. armed forces in 1918. It was the standard issue anti-personnel grenade used during World War II and in later conflicts, including the Vietnam War. Replacing the failed Mk I of 1917, it was standardized in 1920 as the Mk II, and redesignated the Mk 2 in 1945.

The Mk 2 was replaced by the M26-series (M26/M61/M57) and later M33 series (M33/M67). It was phased out gradually in service beginning with the Korean War. Due to the tremendous quantity manufactured during World War 2, it was in limited standard issue with the US Army and US Marine Corps throughout the 1950s and 1960s. The U.S. Navy was one of the last users when it was discontinued in 1969.

The explosive charge was made of 2 oz of TNT or EC blank fire powder.

Dynamite, nitroglycerin and TNT came up as the latest explosives and made more blast than the gunpowder. Dynamite was a more stable form of nitroglycerin and was cut in to standardised stick lengths in each producing country, thus measurement by sticks and stick lengths and whiths, or if cut by the end users, centimeters and inches of dynamite. Many sticks were made to weights of 1lb or 1kg in weight or to explode with the force of 1lb or kg of compacted (powder rammed hard into a container) gun powder.

Picric acid is an organic compound with the formula (O2N)3C6H2OH. Its IUPAC name is 2,4,6-trinitrophenol (TNP). The name "picric" comes from the Greek πικρός (pikros), meaning "bitter", reflecting its bitter taste. It is one of the most acidic phenols. Like other highly nitrated organic compounds, picric acid is an explosive (Lyddite, etc), which was once its primary use. It has also been used in medicine (antiseptic, burn treatments) and dyes.

Example: Gunpowder is 45% less powerful than TNT, so 1 lb of TNT causes a 1 lb blast, but 1 lb of gunpowder causes a 0.55 lb bast.


Pure EGDN was first produced by the Belgian chemist Louis Henry (1834–1913) in 1870 by dropping a small amount of ethylene glycol into a mixture of nitric and sulfuric acids cooled to 0 °C. The previous year, August Kekulé had produced EGDN by the nitration of ethylene, but this was actually contaminated with beta-nitroethyl nitrate.

Other investigators preparing NGc before publication in 1926 of Rinkenbach's work included: Champion (1871), Neff (1899) & Wieland & Sakellarios (1920), Dautriche, Hough & Oehme.

The American chemist William Henry Rinkenbach (1894–1965) prepared EGDN by nitrating purified glycol obtained by fractioning the commercial product under pressure of 40mm Hg, and at a temperature of 120°. For this 20g of middle fraction of purified glycol was gradually added to mixture of 70g nitric acid and 130g sulfuric acid, maintaining the temperature at 23°. The resulting 49g of crude product was washed with 300ml of water to obtain 39.6g of purified product. The low yield so obtained could be improved by maintaining a lower temperature and using a different nitrating acid mixture.

1) Direct Nitration of Glycol is carried out in exactly the same manner, with the same apparatus, and with the same mixed acids as nitration of glycerine. In the test nitration of anhydrous glycol (100g) with 625g of mixed acid HNO 3 40% & H 2SO 4 60% at 10-12°, the yield was 222g and it dropped to 218g when the temp was raised to 29-30°. When 500g of mixed acid HNO 3 50% & H 2SO 4 50% was used at 10-12°, the yield increased to 229g. In commercial nitration, the yields obtained from 100 kg anhydrous glycol and 625 kg of mixed acid containing HNO 3 41%, H 2SO 4 58% & water 1% were 222.2 kg of NGc at nitrating temp of 10-12° and only 218.3 kg at 29-30°. This means 90.6% of theory, as compared to 93.6% with NG.

C2H4(OH)2 + 2 HNO3 → C2H4(ONO2)2 + 2 H2O or through the reaction of ethylene oxide and dinitrogen pentoxide:

C2H4O + N2O5 → C2H4(ONO2)2 2) Direct Production of NGc from Gaseous Ethylene. 3) Preparation of NGc from Ethylene Oxide. 4) Preparation of NGc by method of Messing from ethylene through chlorohydrin & ethylene oxide. 5) Preparation of NGc by duPont method.

Amatol is a highly explosive material made from a mixture of TNT and ammonium nitrate. The British name originates from the words ammonium and toluene (a raw material of TNT). Similar mixtures (1 part dinitronaphthalene and 7 parts ammonium nitrate) were known as Schneiderite in France. Amatol was used extensively during World War I and World War II, typically as an explosive in military weapons such as aircraft bombs, shells, depth charges, and naval mines.It was eventually replaced with alternative explosives such as composition B, torpex, and tritonal. An Amatol explosion is 1.10% stronger than TNT.

Explosives were to be measured by the ton. The official pound, kilogram and ton were devised. The TNT equivalent was first though. Explosives like Ethylene glycol dinitrate, Hexanite, lyddite, Ammonite and Amatol came along by WW1.

Example: Amitol is 0.10\10% more powerful than TNT, so 1 lb of TNT causes a 1 lb blast, but 1 lb of Amatol causes a 1.10 lb bast.


Birmingham Blitz D 4126

Bomb Damage in Birmingham, England, C 1940 Although some debris has been cleared on this site on James Street, Aston Newtown, Birmingham, a large pile of timbers and some brick rubble can be clearly seen. Also visible to the right of the photograph are the twisted remains of several Anderson shelters. In the background, two of the terraced houses that are still standing have had the front wall stripped away by the blast, revealing the interior walls and floors. Date- 1940.

Bell YASM-A-1 Tarzon

Bell YASM-A-1 (VB-13) TARZON radio-guided bomb prototype.

Torpex is a secondary explosive, 50% more powerful than TNT by mass. Torpex comprises 42% RDX, 40% TNT and 18% powdered aluminium. It was used in the Second World War from late 1942. The name is short for "Torpedo Explosive", having been originally developed for use in torpedoes. Torpex proved to be particularly useful in underwater munitions because the aluminium component had the effect of making the explosive pulse last longer, which increased the destructive power. Torpex was used only in critical applications, e.g. torpedoes and the Upkeep, Tallboy, and Grand Slam bombs. It was also used in the Operation Aphrodite drones. Torpex has long been superseded by H6 and PBX compositions. It is therefore regarded as obsolete, so Torpex is unlikely to be encountered except in old munitions or unexploded ordnance.

The ASM-A-1 Tarzon, also known as VB-13, was a guided bomb developed by the United States Army Air Forces during the late 1940s. Mating the guidance system of the earlier Razon radio-controlled weapon with a British Tallboy 12,000-pound (5,400 kg) bomb, the ASM-A-1 saw brief operational service in the Korean War before being withdrawn from service in 1951. It had a 5,200 pound (2,400 kg) Torpex D1 warhead.

RDX is the organic compound with the formula (O2NNCH2)3. It is a white solid widely used as an explosive. Chemically, it is classified as nitramide. A more powerful explosive than TNT, it was used widely in World War II. RDX is also known as Research Department Formula X.

It is often used in mixtures with other explosives and plasticizers or phlegmatizers (desensitizers). RDX is stable in storage and is considered one of the most powerful and brisant of the military high explosives.

RDX is also known, but less commonly, as cyclonite, hexogen (particularly in Russian, German and German-influenced languages), T4 and chemically as cyclotrimethylenetrinitramine. In the 1930s, the Royal Arsenal, Woolwich, started investigating cyclonite to use against German U-boats that were being built with thicker hulls. The goal was an explosive more powerful than TNT. For security reasons, Britain termed cyclonite as "Research Department Explosive" (R.D.X.). The term RDX appeared in the United States in 1946. The first public reference in the United Kingdom to the name RDX, or R.D.X. to use the official title, appeared in 1948; its authors were the Managing Chemist, ROF Bridgwater, the Chemical Research and Development Department, Woolwich, and the Director of Royal Ordnance Factories, Explosives; again, it was referred to as simply RDX.

The GBU-43/B Massive Ordnance Air Blast (MOAB pronounced /ˈmoʊ.æb/, commonly known as the "Mother of All Bombs") is a large-yield conventional (non-nuclear) bomb, developed for the United States military by Albert L. Weimorts, Jr. of the Air Force Research Laboratory. At the time of development, it was touted as the most powerful non-nuclear weapon ever designed. The bomb was designed to be delivered by a C-130 Hercules, primarily the MC-130E Combat Talon I or MC-130H Combat Talon II variants.

Since then, Russia has tested its "Father of All Bombs", which is claimed to be four times as powerful as the MOAB.

Torpex, Composition B, Composition H6, RDX and Minol were both common and noticeably more powerful explosives. Torpex had 50% more blast as TNT had, so making a standard table and blast measure necessary when planning a detonation. Every one was already used to TNT, so the bomb's charge would be measured by the Tn, lb or kg in dead weight, but the blast would be measured in the equivalent to the Tn, lb or kg of TNT expected to from such a blast.

Example: Torpex is 0.50% more powerful than TNT, so 1 lb of TNT causes a 1lb blast, but 1 lb of Torpex causes a 1.50lb bast.

The TNT equivalent was first codified and scientifically defined.

Cold warEdit

Claymore Recon placement

A US Marine places a M18 Claymore mine.

F-4B VF-111 dropping bombs on Vietnam

A U.S. Navy F-4B from VF-111 dropping bombs over Vietnam, 1971.

Conventional blastsEdit

Tovex (also known as Trenchrite, Seismogel, and Seismopac) is a water-gel explosive composed of ammonium nitrate and methylammonium nitrate that has several advantages over traditional dynamite, including lower toxicity and safer manufacture, transport, and storage. It has thus almost entirely replaced dynamite. There are numerous versions ranging from shearing charges to aluminized common blasting agents. Tovex is used by 80% of international oil companies for seismic exploration. Torvex is 0.80% as effective as TNT.

C-4 or Composition C-4 is a common variety of the plastic explosive family known as Composition C. The British version of the explosive is known as PE-4 (Plastic Explosive). C-4 is composed of explosives, plastic binder, plasticizer to make it malleable, and usually a marker or odorizing taggant chemical.

C-4 has a texture similar to modeling clay and can be molded into any desired shape. C-4 is stable and an explosion can only be initiated by the combination of extreme heat and shock wave from a detonator. C-4 is 1.34 times as effective as TNT.

Semtex is a general-purpose plastic explosive containing RDX and PETN. It is used in commercial blasting, demolition, and in certain military applications. Semtex became notoriously popular with terrorists because it was, until recently, extremely difficult to detect, as in the case of Pan Am Flight 103. Semtex is 1.35 times as effective as TNT.

For its original military use it was manufactured under the name B 1. It has been manufactured in Czechoslovakia under its current name since 1964, labeled as SEMTEX 1A, since 1967 as SEMTEX H and since 1987 as SEMTEX 10.

The composition of the two most common variants differ according to their use. The 1A (or 10) variant is used for blasting, and is based mostly on crystalline PETN. The version 1AP and 2P are formed as hexagonal booster charges; a special assembly of PETN and wax inside the charge assures high reliability for detonating cord or detonator. The H (or SE) variant is intended for explosion hardening.

Cyclotol is an explosive consisting of castable mixtures of RDX and TNT. It is related to the more common Composition B, which is roughly 60% RDX and 40% TNT; various compositions of Cyclotol contain from 65% to 80% RDX.

Typical ranges are from 60/40 to 80/20 RDX/TNT, with the most common being 70/30, while the military mostly uses 77/23 optimized in warheads.

Cyclotol is not commonly used, but was reportedly the main explosive used in at least some models of US Nuclear weapon. Sublette lists Cyclotol as the explosive in the US B28 nuclear bomb and possibly related weapons that used the common Python primary - W34, W28, W40, and W49.

It was also used in the B53 nuclear bomb and associated W53 warhead. In a modern military industry last 20 years Cyclotol can be used as filler and main charge most of cluster submunition, especially with a piezoelectric crystal igniter.

Tritonal is a mixture of 80% TNT and 20% aluminium powder, used in several types of ordnance such as air-dropped bombs. The aluminium improves the total heat output and hence impulse of the TNT — the length of time during which the blast wave is positive. Tritonal is approximately 18% more powerful than TNT alone.

The 87 kg of tritonal in a Mark 82 bomb has the potential to produce approximately 863 MJ of energy when detonated.

The "bunker busters"BLU-109/B (BLU is an acronym for Bomb Live Unit) has a steel casing about 1 inch (25.4 mm) thick, filled with 530 lb (240 kg) of Tritonal.

It has a delayed-action tail-fuze. The BLU-109 entered service in 1985. It is also used as the warhead of some marks of the GBU-15 electro-optically guided bomb, the GBU-27 Paveway III laser-guided bomb, and the AGM-130 rocket-boosted weapon. This weapon can penetrate 4–6 feet of reinforced concrete, which is greater than the 3 foot capability of the Small Diameter Bomb. The BLU-109 is not likely to be retired anytime soon, due to the much larger blast capable from its warhead.

The BLU-118 is reportedly a thermobaric explosive filler variation on the BLU-109 casing and basic bomb design. It contains PBXIH-135, a traditional explosive.

A polymer-bonded explosive, also called PBX or plastic-bonded explosive, is an explosive material in which explosive powder is bound together in a matrix using small quantities (typically 5–10% by weight) of a synthetic polymer. PBXs are normally used for explosive materials that are not easily melted into a casting, or are otherwise difficult to form. PBX was first developed in 1952 in Los Alamos National Laboratory, as RDX embedded in polystyrene with dioctyl phthalate plasticizer. HMX compositions with teflon-based binders were developed in 1960s and 1970s for gun shells and for Apollo Lunar Surface Experiments Package (ALSEP) seismic experiments, although the latter experiments are usually cited as using hexanitrostilbene (HNS).

Nukes, Cyclotol, Tovex, PBX, C-4 and Semtex now came in to use. It was at this time that Kt and Mt came in to usage.

C-4 is 1.34 times as effective as TNT, Semtex is 1.35 times as effective as TNT and Torvex is 0.80% as effective as TNT.

Example: Torvex is 20% less powerful than TNT, so 1 lb of TNT causes a 1 lb blast, but 1 lb of Torvex causes 0.80 lb a bast.
Example: C-4 is 0.34% more powerful than TNT, so 1 lb of TNT causes a 1 lb blast, but 1 lb of C-4 causes a 1.34 lb bast.
Example: Semtex is 0.35% more powerful than TNT, so 1 lb of TNT causes a 1 lb blast, but 1 lb of Semtex causes a 1.35 lb bast.

An average IRA special issue 'spectacular' bomb of the mid to late 1980s used to destroy entire RUC\Army installations in 1 blast was on average had a blast of ~2 tonnes. It was made of high explosive which was most often made of ammonia based fertilizer and\or Semtex.

Atomic blastsEdit

The Terrifying True Scale of Nuclear Weapons-0

The Terrifying True Scale of Nuclear Weapons-0

Nuclear weapons have come a long way and come in all types of different sizes. Some are relatively small while others are enormous, so big they boggle the mind at what they can be capable of. This video analyzes the sizes and impacts of various different nuclear devices, the history of nuclear weapons and what countries in the world are in possession of such devices. Music used is by Ross Bugden, check out his channel here! The exact song is titled; Something wicked, and can be found here Data gathered from Nukemap, check them out! Google Earth Pro used for several imaging shots, used under fair use. Video Credits: Hiroshima bombing and crossroads nuclear weapons test: used here under fair use. PLEASE SUBSCRIBE: Follow us on Facebook: Follow us on Twitter: Videos explaining things. Mostly over topics like history, geography, economics and science. We believe that the world is a wonderfully fascinating place, and you can find wonder anywhere you look. That is what our videos attempt to convey.

A nuclear explosion is an explosion that occurs as a result of the rapid release of energy from a high-speed nuclear reaction. The driving reaction may be nuclear fission, nuclear fusion or a multistage cascading combination of the two, though to date all fusion based weapons have used a fission device to initiate fusion, and a pure fusion weapon remains a hypothetical device.

Atmospheric nuclear explosions are associated with mushroom clouds, although mushroom clouds can occur with large chemical explosions, and it is possible to have an air-burst nuclear explosion without these cloud's Nuclear explosions produce radiation and radioactive debris.

Any nuclear explosion (or nuclear war) would have wide-ranging, long-term, catastrophic effects, that could threaten the survival of humankind. Radioactive contamination would cause genetic mutations and cancer across many generations.

The explosions caused by nukes were Inevitably to be measured in the much greater megaton and kiloton range due to their massive blasts.

Technically speaking, Atomic war would be any war in which nuclear weapons are used, ranging from a single, small weapon (like a bunker buster or the ones dropped by the United States on Japan in World War II) or a ad-hock terrorist bomb and all the way up to a full-blown assault between nuclear powers using atomic arms and their opponents (including those without nukes).

Example: Mk-54 (Davy Crockett) – 10 or 20 tons (AKA: 0.010 kilotons or 0.020 kilotons) yield, Davy Crockett artillery warhead.
Example: Mk-54 (SADM) – approximate yield from 10 tons to 1 kiloton, Special Atomic Demolition Munition device.
Example: W48 was an American nuclear artillery shell – 72 tons of TNT (0.072 kiloton).
Example: Pluton missile– 15 or 25 kilotons.
Example: Little Boy bomb– ~16 kilotons.
Example: Operation Buster test blast– 21 kilotons.
Example: 3x W58 warhead in the UGM-27 Polaris– 200 kilotons for each one.
Example: R-12 (SS-4 Sandal)- 2.3 megatons
Example: Ivy Mike test blast – 10.4 megatons.


The ton equivalent (now 'blast ton', 'explosive ton', 'TNT ton', 'ton of TNT', 'ton blast', 'ton explosion' just 'ton') is also used as a way of estimating the blast form IEDs, terrorist devices and accidental industrial explosions.

IMX-101 is now becoming more common place in the USA and in time the rest of NATO's nations.

The blast comparison list!Edit

The blast power per lb comparison list!Edit

  • Bang goes the tonnage!
A list of 25 types of explosive.
Explosive. Nationality. Era. % stronger/weaker than TNT. TNT equivalent.
Gunpowder Chinese Medieval -0.55%
Ammonia fertilizer Various WW1
Torvex American Cold War -0.20%
TNT German American Civil War
Amatol British WW1 110%
Ammonium nitrate/fuel oil (ANFO) American Cold War
Semtex Czechoslovak Cold War
C-4 British Cold War
Torpex British WW2 150%
U-235 A-bomb American WW2 +11,428.5714%
Plutonium A-bomb American WW2 +1,500,000%
IMX-101 American\British
Nitroglycerin (NG)
Picric acid British\French
Pure EGDN Belgian
Ammonite British
Fulminated Mercury
Tritonal American Cold War + ~18%

The bomb blast comparison list!Edit

  • Bombs away!
A list of 27 bombs.
Bomb. Nationality. Era. Warhead. TNT equivalent.
The Mk 2 "Pine apple" grenade. American WW1. The explosive charge was made of 2 oz of TNT or EC blank fire powder. 2 oz
Soviet F1 "limonka" hand grenade. Soviet WW2 60 g of Trinitrotoluene (TNT). 2.12 oz
POMZ, POMZ-2 and POMZ-2M stake mine- Yugoslavian Cold War 75 g rod of cast TNT 2.65 oz
7.7 cm Feldkanone 96 neuer Art (7.7 cm FK 96 n.A.) Feldgranate 96: a 6.8 kilogram (15 lb) high-explosive shell . German Imperial WW1 0.19 kg (0.45 lbs) of TNT. 0.45 lb (6.70 oz).
M18 Claymore mine Amerian Cold War 680 g (24 oz) of C-4. 32 oz (2 lb)
MON-50 mine Soviet Cold War 700g of RDX (PVV-5A) 32.92 oz
RP-3 (Rocket Projectile- 3 inch) British WW2 12 lb (5.4 kg) to 60 lb (27 kg) of TNT or TNT/RDX 12 lb to 60 lb (TNT version)
A full RPE “Zarya” 6ZhV corporate polypropylene ammonite powder transportation bag. Ukranian New World Order. 40 kg of ammonite powder. 19.98 lb
M112 demolition charge American. New World Order 25 lb of C-4 33.33 lb
BLU-109/B "bunker buster" American Cold War 530 lb (240 kg) of Tritonal 625.4lb
18 inch Mark XVII torpedo British WW2 600 lb (270 kg) Torpex 900 lb
Fritz X missile Nazi German WW2 320 kg (705 lb) of amatol 775.5 lb
1980's IRA 'spectacular' bomb The IRA Cold War ~1.481 tons of Semtex ~2 tons
Timothy McVeigh's Oklahoma City bombing device. American far right New World Order Just over 4,800 pounds (2,200 kg) of ammonium nitrate fertilizer, nitromethane, and diesel fuel combined as ad mixture. Just over 5,000 pounds (2,300 kg) of TNT.
ASM-A-1 Tarzon bomb American WW2 5,200 lb (2,400 kg) of Torpex D1 3.9 tons
Talboy bomb Britsh WW2 5,200 lb (2,400 kg) of Torpex D1 3.9 tons
Grand slam bomb British WW2 4,144 kg (9,136 lb) of Torpex D1 6.5 tons
Mk-54 (Davy Crockett) infantry rocket launcher American Cold War Atomic warhead 10 or 20 tons (AKA: 0.010 kilotons or 0.020 kilotons)
GBU-43/B Massive Ordnance Air Blast (MOAB) American New World Order 8,500 kg (18,700 lb) of H6 11 tons
Mk-54 Special Atomic Demolition Munition device (SADM). American Cold War Atomic warhead 10 tons to 1 kiloton
W48 nuclear artillery shell American Cold War Atomic warhead 72 tons of TNT (0.072 kiloton).
Pluton missile French Cold War Atomic warhead 15 or 25 kilotons.
Little Boy bomb American WW2 U-235 atomic warhead ~15-16 kilotons.
Fat Man American WW2 Plutonium atomic warhead ~21 kilotons.
Operation Buster test blast American Cold War Atomic warhead 21 kilotons
UGM-27 Polaris missile American Cold War 3 atomic warheads 200 kilotons x 3
R-12 (SS-4 Sandal) Soviet Cold War Atomic warhead 2.3 megatons.
Ivy Mike test blast American Cold War Atomic warhead 10.4 megatons.


Top 10 Demolitions Gone Wrong-1

Top 10 Demolitions Gone Wrong-1

Top 10 Demolitions Gone Wrong.

Absolutely Massive Explosion in Ukraine-0

Absolutely Massive Explosion in Ukraine-0

► Subscribe to GlobalLeaks:

Multiexplosionen in Balakleja. 150.000 Tonnen Munition, Raketen brennen immer noch

Multiexplosionen in Balakleja. 150.000 Tonnen Munition, Raketen brennen immer noch.

Titelmusik von Fallout4 und Gov't Mule with John Scofiled (aka Sco-Mule): 2015-02-24, Ogden Theater, Denver



A huge explosion in Tianjin, China, just recently. this video has all the angles currently uploaded. 12/08/2015.

Huge explosion rips through ammo store in Syria - Truthloader

Huge explosion rips through ammo store in Syria - Truthloader

There has been a gigantic explosion at an ammunition store in Homs, Syria, after opposition fighters fired rockets into the regime-held area of the city.

RAW FOOTAGE Canadian Fireworks Factory Fire and Explosion-0

RAW FOOTAGE Canadian Fireworks Factory Fire and Explosion-0

A June 2013 Canadian Fireworks Factory Fire.

Under ice fireworks REMASTERED

Under ice fireworks REMASTERED. Small Medium Large

Thanks for more than 1 000 000 views!!! To celebrate this we have uploaded the remastered edition of the "Under ice fireworks" video. And this time without music. Original video :

Fuel Depot Explodes In Tianjin China

Fuel Depot Explodes In Tianjin China

Subscribe to GlobalLeaks: A fuel depot in Tianjin China exploded last night around midnight. According to China State TV, the explosion was caused by a shipment of explosives. At least 50 people have been injured so far. There are no reports of causalities at this point. Authorities state to have the situation under control.(Video strictly for news/educational purposes). ___ What is GlobalLeaks? Founded before 2012, the GlobalLeaks News Channel has grown into a popular current events and informational platform on YouTube and across the internet. We strive to show people the events left out of the mainstream media. The events, that in many cases are shaping our world. If you'd like to keep up to date be sure to join us and subscribe.___--- Follow us on twitter: --- Follow us on Facebook: If you have any questions or would like to send us footage, contact us directly at or visit our website

The Real "Quarter Stick" of Dynamite

The Real "Quarter Stick" of Dynamite

This is a m-1000 firecracker also called a Quarter Stick firecracker. This large firecracker was detonated on a rock (which broke) and the ground shook. These are very powferll and no JOKE!

Also seeEdit

  1. Nukes
  2. Sniffex
  3. ADE-651
  4. Science
  5. Torpedoes
  6. Atomic videos
  7. Hand grenades
  8. ASM-A-1 Tarzon
  9. Bomb blast effects
  10. M18 Claymore mine
  11. Land and sea mines
  12. Mk 2 ''Pine apple'' grenade
  13. Popular types of explosives
  14. Soviet F1 "limonka" hand grenade
  15. Ballistic missiles, missiles and military rockets
  16. A nuclear\atomic holocaust or nuclear apocalypse
  17. Nuclear fallout
  18. Atomic accidents and disasters
  19. Atomic\nuclear power stations
  20. Mushroom cloud
  21. Atomic arsenals
  22. Bomb blast effects
  23. Atomic\nuclear war
  24. Atomic accidents and disasters
  25. The Campaign for Nuclear Disarmament (CND)
  26. Atomic War
  27. Atomic warfare information notes.
  28. A nuclear\atomic holocaust or nuclear apocalypse
  29. Nukes
  30. Explosive blast\yield
  31. Atomic arsenals
  32. Bomb blast effects
  33. Atomic\nuclear war
  34. Atomic accidents and disasters
  35. Atomic\nuclear power stations
  36. Geiger-Muller counter
  37. "Poland is 'toast'!"
  38. Nuclear fallout
  39. Atomic videos


Community content is available under CC-BY-SA unless otherwise noted.